
Simulink® Test™

Reference

R2015a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Test™ Reference
© COPYRIGHT 2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

March 2015 Online Only New for Version 1.0 (Release 2015a)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

iii

Contents

Functions — Alphabetical List
1

Classes — Alphabetical List
2

Methods — Alphabetical List
3

Blocks — Alphabetical List
4

1

Functions — Alphabetical List

1 Functions — Alphabetical List

1-2

sltest.harness.check
Compare component under test between harness model and main model

Syntax

CheckResult = sltest.harness.check(harnessOwner,harnessName)

[CheckResult,CheckDetails] = sltest.harness.check(harnessOwner,

harnessName)

Description

CheckResult = sltest.harness.check(harnessOwner,harnessName) computes
the checksum of the component under test in the harness model harnessName and
compares it to the checksum of the component harnessOwner in the main model. The
function returns CheckResult as true or false.

[CheckResult,CheckDetails] = sltest.harness.check(harnessOwner,

harnessName) returns additional details of the check operation to the structure
CheckDetails.

Examples

Compare Checksums for a Subsystem

Compute the checksums of the Controller subsystem in the model f14 and the
harness model controller_harness, and compare the results.

f14;

sltest.harness.create('f14/Controller','Name','controller_harness');

CheckResult = sltest.harness.check('f14/Controller','controller_harness')

CheckResult = 0

Compare Checksums for a Subsystem and Get Details

Compute the checksums of the Controller subsystem in the model f14 and the
harness model controller_harness, and compare the results.

 sltest.harness.check

1-3

f14;

sltest.harness.create('f14/Controller','Name','controller_harness');

[CheckResult,CheckDetails] = sltest.harness.check('f14/Controller','controller_harness')

CheckResult = 0

CheckDetails =

 overall: 0

 contents: 0

 interface: 0

 reason: 'VirtualSubsystem'

Input Arguments

harnessOwner — Model or component
string | double

Model or component handle or path, specified as a string or double.
Example: 1.9500e+03

Example: ‘model_name’

Example: ‘model_name/Subsystem’

harnessName — Harness name
string

The name of the harness, specified as a string.
Example: 'harness_name'

Output Arguments

CheckResult — Result of comparison
true | false

The result of the component comparison between the harness model and the system
model, returned as true or false.

For a block diagram harness, the function always returns CheckResult = true.

1 Functions — Alphabetical List

1-4

For a virtual subsystem harness, the function always returns CheckResult = false.

CheckDetails — Details of the check operation
structure

Details of the check operation, returned as a structure. Fields contain the results of
the overall component comparison, the results of the component interface and contents
comparison, the type of component under test in the harness, and the checksum values
for the main model and harness model components.

See Also
sltest.harness.close | sltest.harness.create | sltest.harness.delete
| sltest.harness.export | sltest.harness.find | sltest.harness.load |
sltest.harness.open | sltest.harness.push | sltest.harness.rebuild |
sltest.harness.set

 sltest.harness.close

1-5

sltest.harness.close
Close test harness

Syntax
sltest.harness.close(harnessOwner,harnessName)

Description
sltest.harness.close(harnessOwner,harnessName) closes the test harness
harnessName, which is associated with the model or component harnessOwner.

Examples
Close a Harness Associated With a Subsystem

Close the test harness named controller_harness, associated with the subsystem
Controller in the model f14.

f14;

sltest.harness.create('f14/Controller','Name','sample_controller_harness');

sltest.harness.open('f14/Controller','sample_controller_harness');

sltest.harness.close('f14/Controller','sample_controller_harness');

Close a Harness Associated With a Top-level Model

Close the test harness named sample_harness, which is associated with the model f14.

f14;

sltest.harness.create('f14','Name','sample_harness');

sltest.harness.open('f14','sample_harness');

sltest.harness.close('f14','sample_harness');

Input Arguments
harnessOwner — Model or component
string | double

1 Functions — Alphabetical List

1-6

Model or component handle or path, specified as a string or double.
Example: 1.9500e+03

Example: ‘model_name’

Example: ‘model_name/Subsystem’

harnessName — Harness name
string

The name of the harness, specified as a string.
Example: ‘harness_name’

See Also
sltest.harness.check | sltest.harness.create | sltest.harness.delete
| sltest.harness.export | sltest.harness.find | sltest.harness.load |
sltest.harness.open | sltest.harness.push | sltest.harness.rebuild |
sltest.harness.set

 sltest.harness.create

1-7

sltest.harness.create
Create test harness

Syntax

sltest.harness.create(harnessOwner)

sltest.harness.create(harnessOwner,Name,Value)

Description

sltest.harness.create(harnessOwner) creates a test harness for the model
component harnessOwner, using default properties.

sltest.harness.create(harnessOwner,Name,Value) uses additional options
specified by one or more Name,Value pair arguments.

Examples

Create Harness for a Model

Create harness for the f14 model. The harness is called sample_harness and has a
Signal Builder block source and a scope sink.

f14;

sltest.harness.create('f14','Name','sample_harness','Source','Signal Builder','Sink','Scope')

Create Harness for a Subsystem

Create harness for the Controller subsystem of the f14 model. The harness allows
editing of Controller and uses default properties for the other options.

f14;

sltest.harness.create('f14/Controller','EnableComponentEditing',true);

Create Default Harness for a Subsystem

Create a default harness for the Controller subsystem of the f14 model.

1 Functions — Alphabetical List

1-8

f14;

sltest.harness.create('f14/Controller');

Input Arguments

harnessOwner — Model or component
string | double

Model or component handle or path, specified as a string or double.
Example: 1.9500e+03
Example: ‘model_name’
Example: ‘model_name/Subsystem’

Name-Value Pair Options

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: ‘Name’,’controller_harness’,’Source’,’Signal
Builder’,’Sink’,’To File’ specifies a harness named controller_harness, with
a signal builder block source and To File block sinks for the component under test.

'Name' — Harness name
string

The name for the harness you create, specified as the comma-separated pair consisting of
'Name' and a valid MATLAB filename.

Example:

'Name','harness_name'

'Description' — Harness description
string

The harness description, specified as the comma-separated pair consisting of
'Description' and a string.

 sltest.harness.create

1-9

Example:

'Description','A test harness'

'Source' — Component under test input
'Inport' (default) | 'Signal Builder' | 'From Workspace' | 'From File' |
'Test Sequence' | 'None' | 'Custom'

The input to the component, specified as the comma-separated pair consisting of
'Source' and one of the possible source values.

Example:

'Source','Signal Builder'

'CustomSourcePath' — Path to library block for custom source
String

For a custom source, the path to the library block to use as the source, specified as the
comma-separated pair consisting of 'CustomSourcePath' and the path.

Example:

'CustomSourcePath','simulink/Sources/Sine Wave'

'Sink' — Harness output
'Outport' (default) | 'Scope' | 'To Workspace' | 'To File' | 'None' |
'Custom'

The output of the component, specified as the comma-separated pair consisting of
'Sink' and one of the possible sink values.

Example:

'Sink','Scope'

'CustomSinkPath' — Path to library block for custom sink
String

For a custom sink, the path to the library block to use as the sink, specified as the
comma-separated pair consisting of 'CustomSinkPath' and the path.

Example:

'CustomSinkPath','simulink/Sinks/Terminator'

1 Functions — Alphabetical List

1-10

'SeparateAssessment' — Separate Test Assessment block when using Test Sequence
source
false (default) | true

Option to add a separate Test Assessment block to the test harness, specified as a
comma-separated pair consisting of 'SeparateAssessment' and false or true.
'Source' must be 'Test Sequence'.

Example:

'SeparateAssessment',true

'EnableComponentEditing' — Option for component editing
false (default) | true

Option to enable or disable component editing in the harness, specified as a comma-
separated pair consisting of 'EnableComponentEditing' and false or true.

Example:

'EnableComponentEditing',true

'CreateWithoutCompile' — Option to create harness without compiling main model
false (default) | true

Option to specify harness creation without compiling the main model, specified as a
comma-separated pair consisting of 'CreateWithoutCompile' and false or true.

false compiles the model and runs other operations to support the harness build.

true creates the harness without model compilation.

Example:

'CreateWithoutCompile',false

'VerificationMode' — Option to use normal (model), software-in-the-loop (SIL), or
processor-in-the-loop (PIL) block as component under test
false (default) | true

An option to specify what type of block to use in the test harness, specified as a comma-
separated pair consisting of 'VerificationMode' and the type of block to use. SIL and
PIL blocks require Simulink Coder.

 sltest.harness.create

1-11

Example:

'VerificationMode','SIL'

'RebuildOnOpen' — Sets the harness rebuild command to execute when the harness opens
false (default) | true

Option to have the harness rebuild when it opens, specified as the comma-separated pair
consisting of 'UseDefaultName' and false or true.

Example:

'RebuildOnOpen',true

'RebuildModelData' — Sets configuration set and model workspace entries to be updated
during the test harness rebuild
false (default) | true

Option to have the configuration set and model workspace entries updated
during test harness rebuild, specified as the comma-separated pair consisting of
'RebuildModelData' and true or false.

Example:

'RebuildModelData',true

See Also
sltest.harness.check | sltest.harness.close | sltest.harness.delete
| sltest.harness.export | sltest.harness.find | sltest.harness.load |
sltest.harness.open | sltest.harness.push | sltest.harness.rebuild |
sltest.harness.set

1 Functions — Alphabetical List

1-12

sltest.harness.delete
Delete test harness

Syntax

sltest.harness.delete(harnessOwner,harnessName)

Description

sltest.harness.delete(harnessOwner,harnessName) deletes the harness
harnessName associated with harnessOwner.

Examples

Delete a Harness Associated With a Subsystem

Delete the test harness controller_harness, which is associated with the
Controller subsystem in the f14 model.

f14;

sltest.harness.create('f14/Controller','Name','controller_harness');

sltest.harness.delete('f14/Controller','controller_harness');

Delete a Harness Associated With a Top-level Model

Delete the test harness bd_harness, which is associated with the model f14.

f14;

sltest.harness.create('f14','Name','bd_harness');

sltest.harness.delete('f14','bd_harness');

Input Arguments

harnessOwner — Model or component
string | double

 sltest.harness.delete

1-13

Model or component handle or path, specified as a string or double.
Example: 1.9500e+03
Example: ‘model_name’
Example: ‘model_name/Subsystem’

harnessName — Harness name
string

The name of the harness, specified as a string.
Example: ‘harness_name’

See Also
sltest.harness.check | sltest.harness.close | sltest.harness.create
| sltest.harness.export | sltest.harness.find | sltest.harness.load |
sltest.harness.open | sltest.harness.push | sltest.harness.rebuild |
sltest.harness.set

1 Functions — Alphabetical List

1-14

sltest.harness.export
Export test harness to Simulink model

Syntax

sltest.harness.export(harnessOwner,harnessName,'Name',modelName)

Description

sltest.harness.export(harnessOwner,harnessName,'Name',modelName)

exports the harness harnessName, associated with the model or component
harnessOwner, to a new Simulink® model specified by the pair 'Name',modelName.

The model must be saved prior to export.

Examples

Export a Harness to a New Model

Export the harness controller_harness, which is associated with the Controller
subsystem of the f14 model. The new model name is model_from_harness.

f14;

sltest.harness.create('f14/Controller','Name','controller_harness');

save_system('f14');

sltest.harness.export('f14/Controller','controller_harness','Name','model_from_harness');

Input Arguments

harnessOwner — Model or component
string | double

Model or component handle or path, specified as a string or double
Example: 1.9500e+03

 sltest.harness.export

1-15

Example: ‘model_name’
Example: ‘model_name/Subsystem’

harnessName — Name of the harness from which to create the model
string

The name of the harness, specified as a string.
Example: ‘harness_name’

modelName — Name of the new model
string

A valid MATLAB filename for the model generated from the harness, specified as a
string.
Example: ‘harness_name’

See Also
sltest.harness.check | sltest.harness.close | sltest.harness.create
| sltest.harness.delete | sltest.harness.find | sltest.harness.load |
sltest.harness.open | sltest.harness.push | sltest.harness.rebuild |
sltest.harness.set

1 Functions — Alphabetical List

1-16

sltest.harness.find
Find test harnesses in model

Syntax

harnessList = sltest.harness.find(harnessOwner)

harnessList = sltest.harness.find(harnessOwner,Name,Value)

Description

harnessList = sltest.harness.find(harnessOwner) returns a structure listing
harnesses and harness properties that exist for the component or model harnessOwner.

harnessList = sltest.harness.find(harnessOwner,Name,Value) uses
additional search options specified by one or more Name,Value pair arguments.

Examples

Use RegExp to Find Harnesses for a Model Component

Find harnesses for the f14 model and its first-level subsystems. The function matches
harness names according to a regular expression.

f14;

sltest.harness.create('f14','Name','model_harness');

sltest.harness.create('f14/Controller','Name','Controller_Harness1');

harnessList = sltest.harness.find('f14','SearchDepth',1,'Name','_[Hh]arnes+','RegExp','on')

harnessList =

1x2 struct array with fields:

 model

 name

 description

 type

 ownerHandle

 sltest.harness.find

1-17

 ownerFullPath

 ownerType

 isOpen

 canBeOpened

 lockMode

 verificationMode

 saveIndependently

 rebuildOnOpen

 rebuildModelData

 graphical

 origSrc

 origSink

Input Arguments

harnessOwner — Model or component
string | double

Model or component handle or path, specified as a string or double
Example: 1.9500e+03
Example: ‘model_name’
Example: ‘model_name/Subsystem’

Name-Value Pair Options

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: ‘SearchDepth’,2,’Name’,’controller_harness’ searches the model or
component, and two lower hierarchy levels, for harnesses named controller_harness.

'Name' — Harness name to search for
verbatim string | regular expression string

Harness name to search for in the model, specified as the comma-separated pair
consisting of 'Name' and a verbatim string or a regular expression string. You can
specify a regular expression only if you also use the Name,Value pair 'RegExp','on'.

1 Functions — Alphabetical List

1-18

Example:

'Name','sample_harness'

'Name','_[Hh]arnes+'

'RegExp' — Ability to search using a regular expression
'off' (default) | 'on'

Ability to search using a regular expression, specified as the comma-separated pair
consisting of 'RegExp' and 'off' or 'on'. When 'RegExp' is set to 'on', you can use
a regular expression with 'Name'.

Example:

'RegExp','on'

'SearchDepth' — Subsystem levels to search
all levels (default) | nonnegative integer

Subsystem levels into harnessOwner to search for harnesses, specified as the comma-
separated pair consisting of 'SearchDepth' and an integer. For example:

0 searches harnessOwner.

1 searches harnessOwner and its subsystems.

2 searches harnessOwner, its subsystems, and their subsystems.

When you do not specify SearchDepth, the function searches all levels of
harnessOwner.

Example:

'SearchDepth',1

'ActiveOnly' — Active harness search option
'off' (default) | 'on'

Search option to return only active harnesses, specified as the comma-separated pair
consisting of 'ActiveOnly' and 'off' or 'on'.

Example:

 sltest.harness.find

1-19

'ActiveOnly','on'

See Also
sltest.harness.check | sltest.harness.close | sltest.harness.create |
sltest.harness.delete | sltest.harness.export | sltest.harness.load |
sltest.harness.open | sltest.harness.push | sltest.harness.rebuild |
sltest.harness.set

1 Functions — Alphabetical List

1-20

sltest.harness.load
Load test harness

Syntax

sltest.harness.load(harnessOwner,harnessName)

Description

sltest.harness.load(harnessOwner,harnessName) loads the harness
harnessName into memory. harnessName is associated with the model or component
harnessOwner.

Examples

Load a Harness Associated With a Subsystem

Load the test harness controller_harness, which is associated with the Controller
subsystem in the f14 model.

f14;

sltest.harness.create('f14/Controller','Name','controller_harness');

save_system('f14');

sltest.harness.load('f14/Controller','controller_harness');

Input Arguments

harnessOwner — Model or component
string | double

Model or component handle or path, specified as a string or double.
Example: 1.9500e+03
Example: ‘model_name’

 sltest.harness.load

1-21

Example: ‘model_name/Subsystem’

harnessName — Harness name
string

The name of the harness, specified as a string.
Example: ‘harness_name’

See Also
sltest.harness.check | sltest.harness.close | sltest.harness.create |
sltest.harness.delete | sltest.harness.export | sltest.harness.find |
sltest.harness.open | sltest.harness.push | sltest.harness.rebuild |
sltest.harness.set

1 Functions — Alphabetical List

1-22

sltest.harness.open
Open test harness

Syntax

sltest.harness.open(harnessOwner,harnessName)

Description

sltest.harness.open(harnessOwner,harnessName) opens the harness
harnessName, which is associated with the model or component harnessOwner.

Examples

Open a Harness Associated With a Subsystem

Open the test harness controller_harness, which is associated with the Controller
subsystem in the f14 model.

f14;

sltest.harness.create('f14/Controller','Name','controller_harness');

sltest.harness.open('f14/Controller','controller_harness');

Open a Harness Associated With a Model

Open the test harness sample_harness, which is associated with the f14 model.

f14;

sltest.harness.create('f14','Name','sample_harness');

sltest.harness.open('f14','sample_harness');

Input Arguments

harnessOwner — Model or component
string | double

 sltest.harness.open

1-23

Model or component handle or path, specified as a string or double.
Example: 1.9500e+03
Example: ‘model_name’
Example: ‘model_name/Subsystem’

harnessName — Harness name
string

The name of the harness, specified as a string.
Example: ‘harness_name’

See Also
sltest.harness.check | sltest.harness.close | sltest.harness.create |
sltest.harness.delete | sltest.harness.export | sltest.harness.find |
sltest.harness.load | sltest.harness.push | sltest.harness.rebuild |
sltest.harness.set

1 Functions — Alphabetical List

1-24

sltest.harness.push
Push test harness workspace entries and configuration set to model

Syntax

sltest.harness.push(harnessOwner,harnessName)

Description

sltest.harness.push(harnessOwner,harnessName) pushes the configuration
parameter set and workspace entries associated with the component under test from
the test harness harnessName to the main model containing the model or component
harnessOwner.

Examples

Push Parameters from Harness to Model

Push the parameters of the harness controller_harness, which is associated with the
Controller subsystem in the f14 model, to the f14 model.

f14;

sltest.harness.create('f14/Controller','Name','controller_harness');

sltest.harness.push('f14/Controller','controller_harness')

Input Arguments

harnessOwner — Model or component
string | double

Model or component handle, or path, specified as a string or double
Example: 1.9500e+03
Example: ‘model_name’

 sltest.harness.push

1-25

Example: ‘model_name/Subsystem’

harnessName — Harness name
verbatim string

The name of the harness, specified as a string.
Example: ‘harness_name’

See Also
sltest.harness.check | sltest.harness.close | sltest.harness.create |
sltest.harness.delete | sltest.harness.export | sltest.harness.find |
sltest.harness.load | sltest.harness.open | sltest.harness.rebuild |
sltest.harness.set

1 Functions — Alphabetical List

1-26

sltest.harness.rebuild
Rebuild test harness and update workspace entries and configuration parameter set
based on main model

Syntax

sltest.harness.rebuild(harnessOwner,harnessName)

Description

sltest.harness.rebuild(harnessOwner,harnessName) rebuilds the test harness
harnessName based on the main model containing harnessOwner. The function
transfers the configuration set and workspace entries associated with harnessOwner to
the test harness harnessName. The function also rebuilds conversion subsystems in the
test harness.

Examples

Rebuild Parameters from Harness to Model

Rebuild the harness controller_harness, which is associated with the Controller
subsystem in the f14 model.

f14;

sltest.harness.create('f14/Controller','Name','controller_harness');

sltest.harness.rebuild('f14/Controller','controller_harness');

Input Arguments

harnessOwner — Model or component
string | double

Model or component handle, or path, specified as a string or double
Example: 1.9500e+03

 sltest.harness.rebuild

1-27

Example: ‘model_name’
Example: ‘model_name/Subsystem’

harnessName — Harness name
verbatim string

The name of the harness, specified as a string.
Example: ‘harness_name’

See Also
sltest.harness.check | sltest.harness.close | sltest.harness.create
| sltest.harness.delete | sltest.harness.export | sltest.harness.find
| sltest.harness.load | sltest.harness.open | sltest.harness.push |
sltest.harness.set

1 Functions — Alphabetical List

1-28

sltest.harness.set
Change test harness property

Syntax

sltest.harness.set(harnessOwner,harnessName,Name,Value)

Description

sltest.harness.set(harnessOwner,harnessName,Name,Value) changes a
property, specified by one Name,Value pair argument, for the test harness harnessName
owned by the model or component harnessOwner.

Examples

Change a test harness name

Change the name of the test harness controller_harness, which is associated with
the Controller subsystem in the f14 model. The new name is new_name.

f14;

sltest.harness.create('f14/Controller','Name','controller_harness');

sltest.harness.set('f14/Controller','controller_harness','Name','new_name')

Enable component editing in the test harness

Set the test harness controller_harness to allow editing of the component under test.

f14;

sltest.harness.create('f14/Controller','Name','controller_harness');

sltest.harness.set('f14/Controller','controller_harness','EnableComponentEditing',true);

Input Arguments

harnessOwner — Model or component
string | double

 sltest.harness.set

1-29

Model or component handle, or path, specified as a string or double
Example: 1.9500e+03
Example: ‘model_name’
Example: ‘model_name/Subsystem’

harnessName — Harness name
string

The name of the harness, specified as a string.
Example: ‘harness_name’

Name-Value Pair Options

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: ‘Name’,’updated_harness’ specifies a new harness name
’updated_harness’.

'Name' — New harness name
string

The new name for the harness, specified as the comma-separated pair consisting of
'Name' and a valid MATLAB filename.

Example:

'Name','new_harness_name'

'Description' — New harness description
string

The new description for the harness, specified by the comma-separated pair consisting of
'Description' and a string.

Example:

'Description','An updated test harness'

1 Functions — Alphabetical List

1-30

'EnableComponentEditing' — Set the option for component editing
false | true

An option to enable or disable component editing in the harness, specified by a comma-
separated pair consisting of 'EnableComponentEditing' and false or true.

Example:

'EnableComponentEditing',true

'RebuildOnOpen' — Sets the harness rebuild command to execute when the harness opens
false (default) | true

Option to have the harness rebuild when it opens, specified as the comma-separated pair
consisting of 'UseDefaultName' and false or true.

Example:

'RebuildOnOpen',true

'RebuildModelData' — Sets configuration set and model workspace entries to be updated
during the test harness rebuild
false (default) | true

Option to have the configuration set and model workspace entries updated
during test harness rebuild, specified as the comma-separated pair consisting of
'RebuildModelData' and true or false.

Example:

'RebuildModelData',true

'RebuildWithoutCompile' — Sets the harness to rebuild without compiling the main
model
false (default) | true

Option to rebuild the harness without compiling the main model, in which cached
information from the most recent compile is used to update the test harness workspace,
and conversion subsystems are not updated, specified as the comma-separated pair
consisting of 'RebuildWithoutCompile' and true or false.

Example:

'RebuildWithoutCompile',true

 sltest.harness.set

1-31

See Also
sltest.harness.check | sltest.harness.close | sltest.harness.create
| sltest.harness.delete | sltest.harness.export | sltest.harness.find
| sltest.harness.load | sltest.harness.open | sltest.harness.push |
sltest.harness.rebuild

1 Functions — Alphabetical List

1-32

sltest.testmanager.clear
Clear all test files from the Simulink Test manager

Syntax

sltest.testmanager.clear

Description

sltest.testmanager.clear clears all of the test files from the Simulink Test™
manager.

Introduced in R2015a

 sltest.testmanager.close

1-33

sltest.testmanager.close
Close the Simulink Test manager

Syntax

sltest.testmanager.close

Description

sltest.testmanager.close closes the Simulink Test manager interface.

Introduced in R2015a

1 Functions — Alphabetical List

1-34

sltest.testmanager.load
Load a test file in the Simulink Test manager

Syntax

sltest.testmanager.load(filename)

Description

sltest.testmanager.load(filename) loads a test file in the Simulink Test
manager.

Input Arguments

filename — File name of test file
string

File name of a test file, specified as a string. The string must fully specify the location of
the test file.

Introduced in R2015a

 sltest.testmanager.report

1-35

sltest.testmanager.report
Generate report of test results

Syntax

sltest.testmanager.report(resultObj,filePath,Name,Value)

Description

sltest.testmanager.report(resultObj,filePath,Name,Value) generates
a report of the specified results in resultObj and saves the report to the filePath
location.

Examples

Generate a Test Report

Generate a report that includes the test author, test title, and the MATLAB version used
to run the test case. The report includes only failed results.

filePath = 'test.pdf';

sltest.testmanager.report(resultObj,filePath,...

 'Author','TestAuthor',...

 'Title','Test',...

 'IncludeMLVersion',true,...

 'IncludeTestResults',2);

Input Arguments

resultObj — Results set object
sltest.testmanager.ResultSet object

Results set object to get results from, specified as a sltest.testmanager.ResultSet
object.

1 Functions — Alphabetical List

1-36

filePath — File name and path of the generated report
string

File name and path of the generated report. File path must have file extension of pdf,
docx, or zip, which are the only supported file types.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'IncludeTestRequirement',true

'Author' — Report author
empty string (default) | string

Name of the report author, specified as a string.
Example: ‘Test Engineer’

'Title' — Report title
‘Test’ (default) | string

Title of the report, specified as a string.
Example: ‘Test_Report_1’

'IncludeMLVersion' — Include the MATLAB® version
true (default) | false

Choose to include the version of MATLAB used to run the test cases, specified as a
boolean value, true or false.

'IncludeTestRequirement' — Include the test requirement
true (default) | false

Choose to include the test requirement link defined under Requirements in the test
case, specified as a boolean value, true or false.

'IncludeSimulationSignalPlots' — Include the simulation output plots
false (default) | true

 sltest.testmanager.report

1-37

Choose to include the simulation output plots of each signal, specified as a boolean value,
true or false.

'IncludeComparisonSignalPlots' — Include the comparison criteria plots
false (default) | true

Choose to include the criteria comparison plots defined under baseline or equivalence
criteria in the test case, specified as a boolean value, true or false.

'IncludeErrorMessages' — Include error messages
true (default) | false

Choose to include any error messages from the test case simulations, specified as a
boolean value, true or false.

'IncludeTestResults' — Include all or subset of test results
2 (default) | 0 | 1

Choose to include all or a subset of test results in the report. You can select all results
(passed and failed), specified as the value 0, select only passed results, specified as the
value 1, or select only failed results, specified as the value 2.

'LaunchReport' — Open report at completion
true (default) | false

Open the report when it is finished generating, specified as a boolean value, true or to
not open the report, false.

Introduced in R2015a

1 Functions — Alphabetical List

1-38

sltest.testmanager.run
Run all test files in the Simulink Test manager

Syntax

resultObj = sltest.testmanager.run

Description

resultObj = sltest.testmanager.run runs all of the test files in the Simulink Test
manager. The function returns a sltest.testmanager.ResultSet object.

Output Arguments

resultObj — Results set object
sltest.testmanager.ResultSet object

Results set object to get results from, specified as a sltest.testmanager.ResultSet
object.

Introduced in R2015a

 sltest.testmanager.view

1-39

sltest.testmanager.view
Launch the Simulink Test manager

Syntax

sltest.testmanager.view

Description

sltest.testmanager.view launches the Simulink Test manager interface. You can
also use the function sltestmgr to launch the test manager.

Introduced in R2015a

2

Classes — Alphabetical List

2 Classes — Alphabetical List

2-2

sltest.testmanager.ResultSet class
Package: sltest.testmanager

Access results set data

Description

Instances of sltest.testmanager.ResultSet enable you to access the results from
test execution performed by the test manager.

Construction

The function sltest.testmanager.run creates a sltest.testmanager.ResultSet
object.

Properties

NumPassed — Number of passed tests
integer

The number of passed tests contained in the results set.

NumFailed — Number of failed tests
integer

The number of failed tests contained in the results set.

NumDisabled — Number of disabled tests
integer

The number of test cases that were disabled in the results set.

NumTotal — Total number of tests
integer

The total number of tests in the results set.

 sltest.testmanager.ResultSet class

2-3

NumTestCaseResults — Number of test case result children
integer

The number of test case results that are direct children of the results set object.

NumTestSuiteResults — Number of test suite result children
integer

The number of test suite results that are direct children of the results set object.

Methods

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Get test result set data

Get results from running a test file with sltest.testmanager.run.

result = sltest.testmanager.run

testCaseResultArray = result.getTestCaseResults()

testSuiteResultArray = result.getTestSuiteResults()

Introduced in R2015a

2 Classes — Alphabetical List

2-4

sltest.testmanager.TestCaseResult class
Package: sltest.testmanager

Access test case results data

Description

Instances of sltest.testmanager.ResultSet enable you to access the results from
test execution performed by the test manager.

Construction

The function sltest.testmanager.run creates a sltest.testmanager.ResultSet
object.

Properties

NumPassed — Outcome of test case result
0 | 1 | 2 | 3

The outcome of an individual test case result. The integer 0 means the test case was
disabled, 1 means the test case execution was incomplete, 2 means the test case passed,
and 3 means the test case failed.

TestFilePath — Test file path
string

The path of the test file used to create the result set.

TestCasePath — Hierarchy path in the result set
string

The hierarchy path in the parent result set.

TestCaseType — Type of test case
'Simulation' | 'Baseline' | 'Equivalence'

 sltest.testmanager.TestCaseResult class

2-5

The type of test case from the three available test cases in the test manager: simulation,
baseline, and equivalence.

Methods

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Introduced in R2015a

2 Classes — Alphabetical List

2-6

sltest.testmanager.TestSuiteResult class
Package: sltest.testmanager

Access test suite results data

Description

Instances of sltest.testmanager.ResultSet enable you to access the results from
test execution performed by the test manager.

Construction

The function sltest.testmanager.run creates a sltest.testmanager.ResultSet
object.

Properties

TestFilePath — Test file path
string

The path of the test file used to create the result set.

TestSuitePath — Hierarchy path in the result set
string

The hierarchy path in the parent result set.

NumPassed — Number of passed tests
integer

The number of passed tests contained in the results set.

NumFailed — Number of failed tests
integer

The number of failed tests contained in the results set.

 sltest.testmanager.TestSuiteResult class

2-7

NumDisabled — Number of disabled tests
integer

The number of test cases that were disabled in the results set.

NumTotal — Total number of tests
integer

The total number of tests in the results set.

NumTestCaseResults — Number of test case result children
integer

The number of test case results that are direct children of the results set object.

NumTestSuiteResults — Number of test suite result children
integer

The number of test suite results that are direct children of the results set object.

Methods

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Introduced in R2015a

3

Methods — Alphabetical List

3 Methods — Alphabetical List

3-2

getComparisonRun
Class: sltest.testmanager.TestCaseResult
Package: sltest.testmanager

Get test case comparison results

Syntax

runArray = getComparisonRun(resultObj)

Description

runArray = getComparisonRun(resultObj) gets all of the test case comparison
results that are direct children of the results set object.

Input Arguments

resultObj — Results set object
object

Results set object to get results from, specified as a
sltest.testmanager.TestCaseResult object.

Output Arguments

runArray — Test case results
object

Contains the test case comparison results that are a direct child of the results set object.

Introduced in R2015a

 getOutputRuns

3-3

getOutputRuns
Class: sltest.testmanager.TestCaseResult
Package: sltest.testmanager

Get test case output results

Syntax

runArray = getOutputRuns(resultObj)

Description

runArray = getOutputRuns(resultObj) gets all of the test case output results that
are direct children of the results set object.

Input Arguments

resultObj — Results set object
object

Results set object to get results from, specified as a
sltest.testmanager.TestCaseResult object.

Output Arguments

runArray — Test case results
object

Contains the test case output results that are a direct child of the results set object.

Introduced in R2015a

3 Methods — Alphabetical List

3-4

getTestCaseResults
Class: sltest.testmanager.ResultSet
Package: sltest.testmanager

Get test case results object

Syntax
testCaseResultArray = getTestCaseResults(resultObj)

Description
testCaseResultArray = getTestCaseResults(resultObj) gets all of the test
case results that are direct children of the results set object.

Input Arguments
resultObj — Results set object
object

Results set object to get results from, specified as a sltest.testmanager.ResultSet
object or sltest.testmanager.TestSuiteResult object.

Output Arguments
testCaseResultArray — Test case results object
object

Contains the test case results objects that are a direct child of the results set object.

Examples
Get test result set data

Get results from running a test file with sltest.testmanager.run.

 getTestCaseResults

3-5

result = sltest.testmanager.run

testCaseResultArray = getTestCaseResults(result)

testSuiteResultArray = getTestSuiteResults(result)

Introduced in R2015a

3 Methods — Alphabetical List

3-6

getTestCaseResults
Class: sltest.testmanager.TestSuiteResult
Package: sltest.testmanager

Get test case results object

Syntax

testCaseResultArray = getTestCaseResults(resultObj)

Description

testCaseResultArray = getTestCaseResults(resultObj) gets all of the test
case results that are direct children of the results set object.

Input Arguments

resultObj — Results set object
object

Results set object to get results from, specified as a sltest.testmanager.ResultSet
object or sltest.testmanager.TestSuiteResult object.

Output Arguments

testCaseResultArray — Test case results object
object

Contains the test case results objects that are a direct child of the results set object.

Introduced in R2015a

 getTestSuiteResults

3-7

getTestSuiteResults
Class: sltest.testmanager.ResultSet
Package: sltest.testmanager

Get test suite results object

Syntax
testSuiteResultArray = getTestSuiteResults(resultObj)

Description
testSuiteResultArray = getTestSuiteResults(resultObj) gets all of the test
suite results that are direct children of the results set object.

Input Arguments
resultObj — Results set object
object

Results set object to get results from, specified as a sltest.testmanager.ResultSet
object or sltest.testmanager.TestSuiteResult object.

Output Arguments
testSuiteResultArray — Test suite results object
object

Contains the test suite results objects that are a direct child of the results set object.

Examples
Get test result set data

Get results from running a test file with sltest.testmanager.run.

3 Methods — Alphabetical List

3-8

result = sltest.testmanager.run

testCaseResultArray = getTestCaseResults(result)

testSuiteResultArray = getTestSuiteResults(result)

Introduced in R2015a

 getTestSuiteResults

3-9

getTestSuiteResults
Class: sltest.testmanager.TestSuiteResult
Package: sltest.testmanager

Get test suite results object

Syntax

testSuiteResultArray = getTestSuiteResults(resultObj)

Description

testSuiteResultArray = getTestSuiteResults(resultObj) gets all of the test
suite results that are direct children of the results set object.

Input Arguments

resultObj — Results set object
object

Results set object to get results from, specified as a sltest.testmanager.ResultSet
object or sltest.testmanager.TestSuiteResult object.

Output Arguments

testSuiteResultArray — Test suite results object
object

Contains the test suite results objects that are a direct child of the results set object.

Introduced in R2015a

4

Blocks — Alphabetical List

4 Blocks — Alphabetical List

4-2

Test Sequence

Specify test steps, actions, and assessments in tabular format.

Description

Use this block to define a test sequence using a tabular series of steps. The Test
Sequence block uses MATLAB language.

Test Sequence Editor

Double-click the Test Sequence block to open the Test Sequence Editor, displaying the
default test step layout.

The step names are the first lines in the Step column. Set the step names by overwriting
the default names.

 Test Sequence

4-3

Test Sequence Actions and Transitions

A test step consists of one or more actions and one or more transitions defined using
MATLAB language. You use step actions to define the test signals going to the
component under test, and test step transitions to define the condition at which the test
sequence executes another test step.

In the first step of the Test Sequence block, initialize the output signals. Outputs are
automatically initialized when you use a Test Sequence block in a test harness that
compiles the main model.

To add a step, right-click a test step in the editor and select Add step before or Add
step after. Select Add sub-step to create test steps in a lower hierarchy level. Select
Delete step to delete the selected step.

Breakpoints

Add a breakpoint to stop simulation at the entrance to a particular test step. Right-click
a test step, and select Break while executing step. A breakpoint stops simulation after
the transition condition to that step, and before any commands or outputs in the step
execute.

When you add a breakpoint to a step, the editor displays a breakpoint marker.

4 Blocks — Alphabetical List

4-4

Test Sequence Hierarchy

You can arrange test sequences in a hierarchy of parent and child sequences. Child steps
are only active when the parent step is active. For each sequence level, you can define the
transition type:

Standard Transition

For each sequence level, the default step entered is the first step listed in the sequence.
For each step:

• Define the outputs of the step in the Step column.
• Define the exit condition from that step in the Transition column.
• Choose the next test step in the Next Step column.

When Decomposition

A When decomposition requires a parent step. To change to a When decomposition
sequence, right-click the parent step and select When decomposition. The parent step
displays the When decomposition icon . Add substeps to define the when conditions.

In a When decomposition sequence, steps execute based on the signal condition defined in
the Step column preceded by the when operator. At each time step, the when conditions
evaluate from top to bottom, and the first step with a matching condition executes.

Do not include the when operator in the final step in the sequence. This step handles
conditions which do not match the other When decomposition steps.

 Test Sequence

4-5

Input, Output, and Data Management

Manage inputs, outputs, and data objects using the Data Symbols pane of the Test
Sequence Editor. To add a data symbol, mouse over the data symbol type and click Add.
To edit or delete a data symbol, mouse over the data symbol and click Edit or Delete.

If you add a data symbol to the test sequence block, you can access that data symbol from
test steps at any hierarchy.

4 Blocks — Alphabetical List

4-6

Data Symbol Type Description Procedure for Adding

Input Test Sequence block inputs. Click Add in the Data
Symbols pane and enter the
input name.

Output Test Sequence block
outputs.

Click Add in the Data
Symbols pane and enter the
output name.

Local Local variables are
available inside the test
sequence block in which
they are defined.

Add a local variable in the
Data Symbols pane and
initialize the local variable in
the first test step.

Constant Constants are read-only
data entries available inside
the test sequence block in
which they are defined.

Add a constant in the Data
Symbols pane and set the
constant value in the Data
dialog box. Click Edit and
enter the constant value in
Initial Value.

Parameter Parameters are available
inside and outside the Test
Sequence block.

Using the Model Explorer,
add a Simulink parameter
in the workspace of the
model containing the Test

 Test Sequence

4-7

Data Symbol Type Description Procedure for Adding

Sequence block. Then
add the parameter name
to the Data Symbols >
Parameter list.

Data Store Memory Data Store Memory entries
are available inside and
outside the Test Sequence
block.

Using the Model Explorer,
add a Simulink.signal
entry in the workspace
of the model containing
the Test Sequence block.
Alternatively, add a Data
Store Memory block to the
model. Then add the data
store memory name to the
Data Symbols > Data
Store Memory list.

Test Sequence Operators and Functions

Operators for Absolute Time Temporal Logic

Operator Syntax Description

after after(n,TimeUnits) Returns true if n specified units of time
have elapsed since the beginning of the
current test step. The timer resets if the
sequence exits the test step.

before before(n,TimeUnits) Returns true until n specified units of time
elapse since the beginning of the current
test step. The timer resets if the sequence
exits the test step.

duration ElapsedTime = duration(SignalCondition)duration uses temporal logic and signal
conditions to return the time in seconds
since SignalCondition became true, within
the period of the step in which the instance
of duration is used.

4 Blocks — Alphabetical List

4-8

Operator Syntax Description

elapsed

Abbreviation: et
elapsed(TimeUnits)

et(TimeUnits)

Returns the elapsed time of the test step in
the units specified. Specifying no time units
returns the value in seconds.

getSimulationTime

Abbreviation: t
getSimulationTime(TimeUnits)

t(TimeUnits)

Returns the elapsed time of the simulation
in the units specified. Specifying no time
units returns the value in seconds.

Syntax in the table uses these arguments:

TimeUnits

The units of time.

Value: sec|msec|usec

Examples:

msec

SignalCondition

Logical expression of the condition to trigger the temporal operator. Variables used in the
signal condition must be inputs, parameters, or constants in the Test Sequence block.

Examples:

u > 0

x <= 1.56

Signal Output Functions

You can use these mathematical functions to generate output for test signals.

Note: These functions are not equivalent to signal generators. Consider the effect of
scaling, rounding, and other approximations in your application.

Syntax Description Additional Information

square(x) Represents a square wave
output of period 1 and

square(x) ≡
4*floor(x)-2*floor(2*x)+1

 Test Sequence

4-9

Syntax Description Additional Information

range -1 to 1, returning
the value of the square
wave at time x.

Within the period 0 <= x
< 1, square(x) returns
the value 1 for 0 <= x <
0.5, and 0 for 0.5 <= x
< 1.

sawtooth(x) Represents a sawtooth
wave output of period
1 and range -1 to 1,
returning the value of the
sawtooth wave at time x.

Within the period 0 <=
x < 1, sawtooth(x)
increases.

sawtooth(x) ≡ 2*(x-
floor(x))-1

triangle(x) Represents a triangle wave
output of period 1 and
range -1 to 1, returning
the value of the triangle
wave at time x.

Within the period 0 <=
x < 0.5, triangle(x)
increases.

triangle(x) ≡
2*abs(sawtooth(x+0.5))-1

ramp(x) Represents a ramp signal
of slope 1, returning the
value of the ramp at time
x.

ramp(x) ≡ x

heaviside(x) Represents a heaviside
step signal, returning 0 for
x < 0 and 1 for x >= 0.

heaviside(x) ≡ x < 0 ? 0 : 1

4 Blocks — Alphabetical List

4-10

Syntax Description Additional Information

latch(x) Returns the current value
of x and holds that value
for the duration of the test
step.

For example, in TestStep2,
latch(x) holds the value of
x upon entry of TestStep2,
and generates a ramp signal
descending from that value.

Step Transition Next Step

TestStep1

x = ramp(t)

after(5,sec)TestStep2

TestStep2

x = latch(x) - ramp(t)

Related Examples
• “Test a Model Component Using Signal Functions”
• “Test Downshift Points of a Transmission Controller”

